Berbagi Ilmu

5 April 2013

Sejarah Perkembangan Matematika



Perkembangan Matematika dan Contohnya
Perkembangan matematika ini sangat berkaitan pada sejarah matematika itu sendiri. Perkembangan ini dimulai dari perkembangan matematika sebelum abad 15-16, perkembangan matematika abad 15-16, perkembangan matematika setelah abad 15-16.
a.        Perkembangan matematika sebelum abad 15-16
1)   Matematika Prasejarah (Prehistoric Mathematics)
Asal usul pemikiran matematika terletak pada konsep angka, besar, dan bentuk. Konsep angka juga telah berevolusi secara bertahap dari waktu ke waktu. Seperti halnya pada zaman purba, berabad-abad sebelum Masehi, manusia telah mempunyai kesadaran akan bentuk-bentuk benda di sekitarnya yang berbeda. Seperti batu berbeda dengan kayu, pohon yang satu berbeda dengan pohon yang lain. Kesadaran seperti ini yang menjadi bibit lahirnya matematika terutama pada geometri. Itulah sebabnya geometri dianggap sebagai bagian matematika yang tertua.[1]
2)   Timut Dekat Kuno (Ancient Near East)
a)   Mesopotamia (Matematika Babylonia)
Matematika babylonia telah mengembangkan matematika dengan menuliskan tabel perkalian pada tablet tanah liat, menangani latihan geometri, masalah pembagian serta mencakup topik mengenai pecahan, aljabar, persamaan kuadrat dan perhitungan pasangan berbalik nilai. Pada masa ini telah ditulis sistem angka sexagesimal (basis-60). Dari sini berasal penggunaan modern dari 60 detik dalam satu menit, 60 menit dalam satu jam, dan 360 (60 x 6) derajat dalam lingkaran, serta penggunaan detik dan menit dari busur untuk menunjukkan pecahan derajat.[2]
b)   Mesir (Matematika Mesir)
Teks matematika yang paling luas adalah papirus Rhind (Papyrus Ahmes) yang berisi tentang uraian belajar aritmatika, geometri, teori bilangan, dan persamaan linier.[3]
c)    Yunani  (Matematika Yunani dan Helenistik)
Matematikawan Yunani menggunakan logika untuk mendapatkan kesimpulan dari defenisi dan aksioma dan digunakan ketelitian matematika untuk bukti mereka. Thales dari Miletus adalah matematikawan pertama yang menerapkan penalaran deduktif pada geometri.[4]
d)   India (Matematika India)
Cataan tertua matematikawan India seperti The Sulba Sutra berisi lampiran teks-teks agama yang memberikan aturan sederhana untuk membangun altar berbagai bentuk, seperti kotak, persegi panjang, dan lain-lain. lampiran ini juga memberi metode untuk membuat lingkaran dengan memberikan persegi yang luasnya sama. Sedangkan catatan The Siddhanta Surya memperkenalkan fungsi trigonometri sinus, kosinus, dan sinus invers, dan meletakkan aturan untuk menentukan gerakan yang sebenarnya posisi benda-benda langit. Madhava dari Sangamagrama menemukan seri Madhava-Leibniz dan menghitung nilai π sebagai 3,14159265359.[5]
e)    Matematika Islam (Abad Pertengahan)
Matematikawan Persia, Muhammad ibn Musa Al-Khawarizmi sering disebut "bapak aljabar" menulis beberapa buku metode untuk memecahkan persamaan aljabar. Perkembangan lebih lanjut dalam aljabar dibuat oleh Al-Karaji dengan memperluas metodologi untuk menggabungkan kekuatan dan akar integer-integer dari jumlah yang tidak diketahui.[6]
Sedangkan Omar Khayyam menulis Discussions of the Difficulties in Euclid, sebuah buku tentang kelemahan dalam Euclid's Elements, terutama postulat paralel dan meletakkan dasar untuk geometri analitik dan geometri non-Euclidean. Sharaf al-Din al-Tusi memperkenalkan konsep fungsi dan dia adalah orang pertama yang menemukan turunan dari polinomial pangkat tiga yang dikembangkan dari konsep kalkulus diferensial.
3)   Matematika Eropa Abad Pertengahan (Medieval European Mathematics)
a)   Abad Pertengahan Awal (Early Middle Ages)
Pada masa ini, Boethius seorang matematikawan memasukkan matematika ke dalam kurikulum ketika menciptakan quadrivium istilah untuk menggambarkan studi aritmatika, geometri, astronomi, dan musik.

b)   Kebangkitan Kembali (Rebirth)
Semenjak buku Khawarizmi The Compendious Book on Calculation by Completion and Balancing diterjemahkan dan teks lengkap Euclid's Elements. Berdampak dengan banyaknya pembaruan dalam matematika. Seperti halnya Fibonacci yang menulis dalam Abaci Liber.[7]
b.        Perkembangan matematika abad 15-16
Perkembangan matematika hampir berhenti antara abad keempat belas dan paruh pertama abad kelima belas. Karena banyak faktor-faktor sosial menyebabkan situasi ini. Namun pada awal pertengahan abad kelima belas terjadi perubahan secara bertahap.
c.         Perkembangan matematika setelah abad 15-16
Pada abad ke-17, Simon Stevin menciptakan dasar notasi desimal modern yang mampu menggambarkan semua nomor, baik rasional atau tidak rasional. Gottfried Wilhelm Leibniz di Jerman, mengembangkan kalkulus dan banyak dari notasi kalkulus masih digunakan sampai sekarang.
Ahli matematika yang paling berpengaruh pada abad ke-18 adalah Leonhard Euler. Kontribusinya berupa pendirian studi tentang teori graph dengan Tujuh tangga dari masalah Königsberg untuk standardisasi banyak istilah matematika modern dan notasi serta mempopulerkan penggunaan π sebagai rasio keliling lingkaran terhadap diameternya. Selanjutnya Joseph Louis Lagrange banyak memiliki karya pada matematika, seperti teori bilangan, aljabar, kalkulus diferensial dan kalkulus variasi
Pada abad ke-19, banyak matematikawan yang mengkaji berbagai bidang pada matematika. Seperti Hermann Grassmann di Jerman memberikan versi pertama ruang vector, William Rowan Hamilton di Irlandia mengembangkan aljabar noncommutative, George Boole di Inggris merancang aljabar yang sekarang disebut aljabar Boolean yang  menjadi titik awal dari logika matematika dan memiliki aplikasi penting dalam ilmu komputer, dan Georg Cantor mendirikan dasar pertama dari teori himpunan.
Salah satu tokoh fenomenal  dalam matematika abad ke-20 Srinivasa Aiyangar Ramanujan, seorang otodidak India yang membuktikan  lebih dari 3000 teorema. Termasuk sifat-sifat angka yang sangat komposit, fungsi partisi dan asymptotics, dan fungsi theta. Dia juga membuat investigasi besar di bidang fungsi gamma, bentuk modular, seri berbeda, seri hipergeometrik dan teori bilangan prima. Perkembangan terakhir adalah pada tahun 2003 konjektur Poincaré diselesaikan oleh Grigori Perelman.

Tidak ada komentar:

Posting Komentar